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The Problem

(P) Min z=E{f(X,f)}, where
xUX

f(x,&)= ¢'x +Min g'y
y=0

st. Dy<Bx+d

x = First-stage decisions (before g? is known)

y= y(x,g) = Second-stage decisions fN — (d : a . B, D)
Network design (demand, transportation times)

Electric Power Generation (demand, generators availability, water
inflows, spot market costs)

Network interdiction (attack successes, network data)



Network Interdiction Problems

MAX E{Min Length fromstot}

MIN E{Max Flow from s to ¢ }

x; = 1 if interdiction of arc (ij) is attempted, 0 otherwise
l; d;=Nominal Arc (i.j) Length, Delay (Shortest Path problem)
u;= Nominal Arc (i,j) Capacity (Maximum Flow problem)

r;= Amount of resource needed to attempt to interdict the Arc (i,))
{ij= Attack success for Arc (ij) (Random variable):

Zij = ll] + fl] dlj Xij (“Delay” for the Shortest Path problem)

~S

— _ (“Diminished” capacity for the Max. Flow Prob.)
;= uy (1 fl]xl]



Our Approach:

Sampling Version of Benders Decomp

e Other researchers have worked 1n this arena,
¢.g., Higle and Sen, Dantzig and Glynn,
Dantzig and Infanger

* QOur approach 1s new, and probably
conceptually simpler



Benders Decomposition (I)

i=cx+tE{hx<) ]

(MP%). Min c'x +©

xUX

s.t. @2 Gpx+g, kDK
@=E{h(x)}




Benders Decomposition (I1I)
Subproblem (and its dual) associated to a first stage feasible solution

SP(¢) : Min Z p%q% y?
y20 (10

S.t. Dwy/cé)SBwjek*'dwa W Qa (ﬂ%))

This is a separable problem:

SPw(fck): Min pwqw y/ff
QO y20
S.1. Dwylcé)S Bw)%k+dw, (”k )




Benders Decomposition (111)

G and g are computed as the expectation of 778 and 77d

G, B| | G=EGY= [ drw)

Sk TThd || &= E{g} = [[id dP(w)

But exact values for G, and g, are unobtainable if
* The number of “scenarios” is large (even if finite)

 Some of the distributions are continuous



Benders Decomposition (1V)

“May we replace the actual G, and g, by estimators?”




Estimation Procedure (I)

How do the estimated cuts behave at the optimal solution?

A




Estimation Procedure (I1I)

(Gk) [ Z:G Z:G,gj
gk ZG,g 0o

N

J

Hypothesis A /
(C.L.T.) (Gk» gAk) Nn+1
\
Th KA *
B g =G x5 = NN
A

Pr{" [m}=0.5

_ Zkl Pr{m}=0.5

Pr{*“Success”}=
Pr{m"}>0.5




Estimation Procedure (I11I)

Pn 2 an[;)()ﬁs — <

p,, = Probability that
{at least n cuts (among
5) are “valid” at x*}

("ps=Pr{All} 23.1%
p,218.7%
P;250%

P, 281.2%

\D; = 96.8%

In general, for a total of n cuts we may find m=m(n, @) such that:

Pr{ at least m among n cuts are validat x*} = I —a




Probabilistic Bound (I)

Let s denote an index for multiple cuts at the same x,
A

“Group ot s=1, 2, ..., n,
cuts at iteration £ s =1

n, is the k-th “group size”

(GE,8%)

s =3

s =2
Actual

s =4 {

s=5

Pr { (at least) one of the 5
cuts is valid at x* } = 0.968

The “Weakest” Cut from
each group







Probabilistic Bound (II)

MpP K - Min c'x+ 0O
O, 0, xUUX

O Gix+&i+ (0 -DM §,

ek U K,s =1,..., ng
S.t. <

ny
Y oi=1,0k0K; s0{013"

s =1

A,={At least one cut among », in the k-t group lies below gZ}

Pr{LB(K)<z } 2 Pr{ ()4} = [-05")
kUK kKUK

n, =10 for all the groups guarantees Prob > (.95 for 50 iters.
n,=7.8+1.57 log(k) 8,9,10,11,11,11, 11, 12, 12,...)
guarantees Prob > (.95 indefinitely



Computational Results (I)
SEMICONDUCTOR WAFER PRODUCTION-FACILITY EXPANSION

wafer 1 \s tep 1 machine 1 | x,=# mach. type k
>< to be purchased
Wafer m Y, pstep SProc. timemachine k (limited budget)
Deagmd

27 machine types (budget allows to buy 6 machines)

F Mort
10 wafers: 5 scenarios of demand per wafer }\"1"3(1)1(11 (1(9“9'90)11 and

Op. Res. 47, No. 6

7 steps: 2 scenarios per step-machine= E (7, )[1+ a]
/

a b'¢ Existing (LB,UB) | New (LB*,UB)
0.00 |CONT. (114.6, -) (137.3, 145.8)
INTEGER | (168.1,179.9) (134.9, 179.3)

0.10 |CONT. (34.24, -) (138.6, 146.9)
INTEGER (86.6, 173.6) (135.8,171.6)

0.25 |CONT. (0.00, -) (126.3, 131.7)
INTEGER (0.00, 153.4) (125.3, 149.4)

(*) Prob. > 0.95 in all cases



Computational Results (II)

NETWORK CAPACITY EXPANSION

* x,= How much capacity should be added to each arc kK in a
communications network (limited budget)

Second stage: Minimize the unmet demand for point-to-point
“connections” m

Each connection m may use different existing routes r
Different routes may share one or more arcs k

* Uncertainty comes from: Demand for connection m

Arcs|Routes Dems.| LB* UB [Gap (%)|MP time|SP time
7 45 10 | 3.77 | 3.80 0.7 2min | 5min
50 | 350 | 86 | 12.74 | 12.91 1.3 |20min| 4h

89™| 620 | 86 | 9.75 | 10.21 4.7 4 h 30 h

(*) Prob. > 0.95 in all cases
(**) From Mak et al. (1999), Op. Res. Letters 24: (LB,UB)=(9.22, 10.06) in 43 h




Computational Results (I1I)
NETWORK INTERDICTION PROBLEMS (I)

MAX E{Min Length fromstot}

MIN E{Max Flow from s to ¢ }

x(i,j) = 1 if interdiction of arc (i.j) is attempted, 0 otherwise
l;= Nominal Arc (i.j) Length (Shortest Path problem)
u;= Nominal Arc (i,j) Capacity (Maximum Flow problem)
r;= Amount of resource needed to attempt to interdict the Arc (i,))
{ij= Attack success for Arc (ij) (Random variable):
/ ij / ij T fl] dlj xij (“Delay” for the Shortest Path problem)

~S

— _ (“Diminished” capacity for the Max. Flow Prob.)
;= uy (1 fyxlj



Computational Results (IV)
NETWORK INTERDICTION PROBLEMS (1I)

No.
P?ybp'zm Nodes | Arcs |allowed| LB UB c(f,Z'; CPU m:tt:j;s
Interd.
Sh.Path | 8 21 6 0298 | 0304* | 20 | 1.7 min
Sh.Path | 50 | 893 10 | 1379 | 1421* | 3.0 | 10min
Sh.Path | 150 | 1.853 | 20 | 12111 |12718*| 5.0 2h
Sh.Path | 150 | 1853 | 50 | 14178 |15.460%| 9.0 3h
Max. Flow | 4 5 2 211* | 244 | 14 | 7sec
Max Flow | 150 | 1.853 | 10 | 151.1* | 157.4 | 4.1
Max. Flow™| 38 | 67 6 | 1076° | 1082 | 06
67 2 572 | 594 | 4.0
67 72 9 382 | 399 | 44
Max Flow™| 37 | 72 6 78.8* | 7982 | 1.3
727 5313* | 54.95 | 34

(*) Prob. > 0.95 in all cases
(**) From Cormican et al. (1996), Op. Res. 46, No. 2



Ongoing and Future Work

* What are the actual convergence properties of the algorithm ?
 How to obtain (valid) M’s as tight as possible ?
* Other representations that avoid the use of M’s ?
 What helpful information might be preprocessed ? :
— Cut dominance
— MP with “minimized cuts” and/or “average cuts”
* What is a “good choice” for the groups sizes a priori?
 How to handle the case when LB exceeds UB?
 What additional strategies in Benders Decomp. may be used ? :
— Elimination of inactive cuts (or Groups of cuts here)
— Trust regions, regularized decomposition

 Less conservative strategies in terms of the probability of success

* Other linear and nonlinear representations of the estimated cuts



